协方差矩阵
a的协方差矩阵就是E(aa')。其中E代表数学期望,a'代表a的转置。我这里默认你这个a是写成列向量的形式的。
所以a/||a||的协方差矩阵就是E(aa')/||a||^2,就是把a的协方差矩阵里的每个元素都除以||a||^2。
当a的协方差矩阵是单位阵时,a的任意一个元素(都是随机变量)的方差都是1,而且任意两个元素不相关(不相关不代表独立)。
更多扩展补充
扩展
可能是我没说清楚,你没有理解我的问题~~我想问的是如果a的协方差矩阵为单位阵I,a/||a||的协方差矩阵会是什么?而且你的回答有错误呀,a/||a||的协方差矩阵怎么会是E(aa')/||a||^2呢,至少||a||^2应该在期望的里面吧!
补充
我的回答完全正确,你还需要搞清楚随机过程里的基本概念。
首先你要搞清楚||a||^2是什么。首先|| ||是个范数。要定义范数,就必须定义内积。
对两个随机变量x和y如何定义内积?答案是两个随机变量相乘,取期望就是内积,也就是E(xy)。
有了内积就有了范数。某个随机变量X的范数就是它自己和自己相乘,取期望,最后开平方。也就是所谓的二阶矩E(x^2)的平方根。
现在,推广一下,对两个(维数相等的)随机向量X和Y如何定义内积?答案是E(XY)=E(x1y1+x2y2+...+xnyn)
定义了内积就有范数。随机向量X的范数就是E(x1^2+x2^2+x3^2+...+xn^2)的平方根,这是一个数。
那个||a||^2是个数字,当然要提出来了。
如果a的协方差是个单位阵,那么显然a的范数就是根号n。
扩展
你把问题想复杂啦,||a||^2=a1^2+...+an^2,是个随机变量,不能提到期望符号外面。另外,如果细究的话,赋范线性空间的定义与内积空间的定义无关,只需要范数满足正定性,齐次性以及三角不等式即可。
补充
我学随机变量的时候先定义了内积就是E(xy),然后诱导出范数。
虽然范数不一定由内积诱导,但是对随机变量,既然有内积,就自然地定义了范数。
要按你的定义也无所谓,反正就是个符号而已,但问题可就复杂了。
协方差矩阵?
1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi, Xj的协方差。2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 在概率论和统计学中,相关或称相关系数或关联系数,显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。对于不同数据特点,可以使用不同的系数。最常用的是皮尔逊积差相关系数。其定义是两个变量协方差除以两个变量的标准差(方差)。皮尔逊积差系数
数学特征其中,E是数学期望,cov表示协方差。因为μX = E(X),σX2 = E(X2)
怎么证明 :协方差矩阵是半正定的?请回答
考虑概率分布组成的线性空间,显然协方差是其中的一个bilinear form,而且显然是非退化的,所以它是一个内积。
由此可知协方差矩阵是关于协方差这个内积的Gram矩阵,自然是对称半正定的,而且它是正定的当且仅当所有涉及的概率分布都是线性无关的。
协方差矩阵,基本上向量 (X - μ) 与其转置相乘,然后求期望,而期望就是个加权平均而已。这样的东西,从线性代数上讲,基本上全是半正定的。
扩展资料
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
协方差与期望值有如下关系:
Cov(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)Cov(X,Y)=Cov(Y,X);
(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);
(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
参考资料来源:百度百科-协方差矩阵
弱弱请问方差–协方差矩阵怎么写
在统计学与概率论中,协方差矩阵(或称共变异矩阵)是一个矩阵,其每个元素是各个向量元素之间的方差。这是从标量随机变量到高维度随机向量的自然推广。假设X是以n个标量随机变量组成的列向量,并且μi 是其第i个元素的期望值, 即, μi = E(Xi)。协方差矩阵被定义的第i,j项是如下协方差:矩阵中的第(i,j)个元素是Xi与Xj的协方差。这个概念是对于标量随机变量方差的一般化推广。
相关系数矩阵和协方差矩阵有什么区别
相关系数矩阵:相当于消除量纲的表示变量间相关性的一个矩阵
协方差矩阵:它是没有消除量纲的表示变量间相关性的矩阵。
你对比下它们的等式变换关系:
r=COV(x,y)/D(x)D(y)
看看我的博客http://blog.csdn.net/yugao1986/article/details/6878578
MATLAB 怎么计算协方差
>>x=rand(1,5);
>>y=2*rand(1,5);
>>cov(x,y) %计算协方差
ans =
0.1079 -0.0225
-0.0225 0.6148
协方差矩阵?
1、协方差矩阵中的每一个元素是表示的随机向量X的不同分量之间的协方差,而不是不同样本之间的协方差,如元素Cij就是反映的随机变量Xi, Xj的协方差。2、协方差是反映的变量之间的二阶统计特性,如果随机向量的不同分量之间的相关性很小,则所得的协方差矩阵几乎是一个对角矩阵。对于一些特殊的应用场合,为了使随机向量的长度较小,可以采用主成分分析的方法,使变换之后的变量的协方差矩阵完全是一个对角矩阵,之后就可以舍弃一些能量较小的分量了(对角线上的元素反映的是方差,也就是交流能量)。特别是在模式识别领域,当模式向量的维数过高时会影响识别系统的泛化性能,经常需要做这样的处理。3、必须注意的是,这里所得到的式(5)和式(6)给出的只是随机向量协方差矩阵真实值的一个估计(即由所测的样本的值来表示的,随着样本取值的不同会发生变化),故而所得的协方差矩阵是依赖于采样样本的,并且样本的数目越多,样本在总体中的覆盖面越广,则所得的协方差矩阵越可靠。4、如同协方差和相关系数的关系一样,我们有时为了能够更直观地知道随机向量的不同分量之间的相关性究竟有多大,还会引入相关系数矩阵。 在概率论和统计学中,相关或称相关系数或关联系数,显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许多根据数据特点而定义的用来衡量数据相关的系数。对于不同数据特点,可以使用不同的系数。最常用的是皮尔逊积差相关系数。其定义是两个变量协方差除以两个变量的标准差(方差)。皮尔逊积差系数
数学特征其中,E是数学期望,cov表示协方差。因为μX = E(X),σX2 = E(X2)
如何求协方差矩阵
(1) 取列向量c和s,分别以cos(theta_i)和sin(theta_i)为分量
那么原来的矩阵是I+XY^T,其中X=[c,s],Y=[s,c]
利用Sylvester恒等式det(I+XY^T)=det(I+Y^TX)即可,后面那个二阶行列式可以算出来
(2) 记原矩阵为A,再取多项式f(x)=a1+a_2x+...+a_nx^{n-1}
再取一个Vandermonde矩阵W,W由x^n-2=0的n个复根x_1,...,x_n生成
那么AW=WD,其中D是对角阵,对角元为f(x_1),...,f(x_n),所以det(A)=det(D)