方差,标准差的概念是什么?
标准差(Standard Deviation)
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差也被称为标准偏差,或者实验标准差。
关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。方差
(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量 随机变量和其数学期望(即 均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的 平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 方差是衡量源数据和期望值相差的度量值。
方差,平方差,标准差的公式是什么?
方差公式:
若x1,x2,x3......xn的平均数为M,则方差公式可表示为:
文字表达式:两个数的和与这两个数的差的积等于这两个数的平方差。此即平方差公式 [2] 。
公式特征:左边为两个数的和乘以这两个数的差,即右边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数;右边为这两个数的平方差即右边是完全相同的项的平方减去符号相反项的平方。
字母的含义:公式中字母的不仅可代表具体的数字、字母、单项式或多项式等代数式。
标准差公式:
标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:
样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/(n-1))
总体标准差=σ=sqrt(((x1-x)^2+(x2-x)^2+......(xn-x)^2)/n)
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差(SD)。
在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
如果还有其他疑问,您可以随时点击下方东奥官方客服热线,或者进入官网联系在线客服,我们的工作人员会竭诚为您解答。
最后祝您学习愉快!
标准差是什么概念
标准差是一组数据平均值分散程度的一种度量。用不准确的俗话说,就是一台测量仪器,在很多次(无穷多)测量同一个被测对象时,得到的结果分散的程度。
例如:用两台电子秤称同一件1000克的东西,称1000次。其中一台有999次称量结果指示1000克,另一台则只有990次。那么999次那台的标准差就比97次那台要小。
方差与标准差的含义?
方差(Variance)也称变异数、均方。作为统计量,常用符号S2表示,作为总体参数,常用符号σ2表示。它是每个数据与该组数据平均数之差乘方后的均值,即离均差平方后的平均数。方差,在数理统计中又常称之为二阶中心矩或二级动差。它是度量数据分散程度的一个很重要的统计特征数。标准差(Standard deviation)即方差的平方根,常用S或SD表示。若用σ表示,则是指总体的标准差,本章只讨论对一组数据的描述,尚未涉及总体问题,故本章方差的符号用S2,标准差的符号用S。符号不同,其含义不完全一样,这一点望读者能够给予充分的注意。二、方差与标准差的意义 方差与标准差是表示一组数据离散程度的最好的指标。其值越大,说明离散程度大,其值小说明数据比较集中,它是统计描述与统计分析中最常应用的差异量数。它基本具备一个良好的差异量数应具备的条件:①反应灵敏,每个数据取值的变化,方差或标准差都随之变化;②有一定的计算公式严密确定;③容易计算;④适合代数运算;⑤受抽样变动的影响小,即不同样本的标准差或方差比较稳定;⑥简单明了,这一点与其他差异量数比较稍有不足,但其意义还是较明白的。除上述之外,方差还具有可加性特点,它是对一组数据中造成各种变异的总和的测量,能利用其可加性分解并确定出属于不同来源的变异性(如组间、组内等)并可进一步说明每种变异对总结果的影响,是以后统计推论部分常用的统计特征数。在描述统计部分,只需要标准差就足以表明一组数据的离中趋势了。标准差比其他各种差异量数具有数学上的优越性,特别是当已知一组数据的平均数与标准差后,便可知占一定百分比的数据落在平均数上下各两个标准差,或三个标准差之内。对于任何一个数据集合,至少有1一1/h2的数据落在平均数的h(大于1的实数)个标准差之内。(切比雪夫定理)。例如某组数据的平均数为50,标准差是5,则至少有75%(1一1/22)的数据落在50-2*5至50+2*5即40至60之间,至少有88.9%(1一1/32)的数据落在50-3*5至50+3*5=35—65之间 (h=2,1-1/h2=1-1/22=3/4=75%,h=3, -1/h2=1-1/32=8/9=88.9%)。如果数据是呈正态分布,则数据将以更大的百分数落在平均数上下两个标准差之内(95%)或三个标准差之内 (99.%)。如下地址自己慢慢看了http://student.zjzk.cn/course_ware/web_xlyjytjx/skxt/chap0301.htm
方差标准差的意义是什么?它们有何特性?
一、标准差它反映组内个体间的离散程度。具有两种特性:
测量到分布程度的结果为非负数值,与测量资料具有相同单位。
一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差可以当作不确定性的一种测量。
例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:
如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
二、方差它反映用来度量随机变量和其数学期望(即均值)之间的偏离程度。具有特性如下
1、设C是常数,则D(C)=0
2、设X是随机变量,C是常数,则有
扩展资料:
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。
参考资料来源:百度百科——标准差
方差、标准差、协方差、有什么区别?
方差、标准差、协方差区别如下:
1、概念不同
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数;
标准差是总体各单位标准值与其平均数离差平方的算术平均数的平方根;
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。
2、计算方法不同
方差的计算公式为:
3、意义不同
方差和标准差都是对一组(一维)数据进行统计的,反映的是一维数组的离散程度;
而协方差是对2组数据进行统计的,反映的是2组数据之间的相关性。
扩展资料
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是要说的标准差(SD)。
在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
参考资料来源:百度百科—协方差
什么是方差 和标准差
方差和标准差是用来描述一组数据的波动性的(集中还是分散)标准差的平方就是方差
方差,标准差的概念是什么?
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
标准差 ,中文环境中又常称均方差,但不同于均方误差(均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。
方差,级差,标准差的概念
方差和标准差:
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
级差
一组数据中最高值与最低值的差
参考资料:百度百科