连笔字网 > 知识库

拉格朗日中值定理,拉格朗日中值定理的内容?

来源:连笔字网 2023-11-24 18:33:18 作者:连笔君

拉格朗日中值定理的内容?

拉格朗日中值定理的内容:

若函数f(x)在区间[a,b]满足以下条件:

(1)在[a,b]连续

(2)在(a,b)可导

则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a) a

证明: 把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.

做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}x.

易证明此函数在该区间满足条件:

1.G(a)=G(b);

2.G(x)在[a,b]连续;

3.G(x)在(a,b)可导.

此即罗尔定理条件,由罗尔定理条件即证。

扩展资料

拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。

参考资料:百度百科-拉格朗日中值定理

什么是拉格朗日中值定理?

拉格朗日中值定理如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)
f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0<θ<1)
上式给出了自变量取得的有限增量△x时,函数增量△y的准确表达式,
因此本定理也叫有限增量定理定理内容 若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续
(2)在(a,b)可导
则在(a,b)中至少存在一点c使f'(c)=[f(b)-f(a)]/(b-a)简洁证明 证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f(a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);2.G(x)在[a,b]连续;3.G(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证几何意义 若连续曲线y=f(x)在A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直与x轴的切线,则曲线在A,B间至少存在一点P(c,f(c)),使得该曲线在P点的切线与割线AB平行.

有哪位大神知道,拉格朗日中值定理的内容

f(x)只需要满足以下条件,就可以用拉格朗日中值定理

拉格朗日中值定理的定理意义?

几何意义:若连续曲线y=f(x)在A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直于x轴的切线,则曲线在A,B间至少存在1点P(c,f(c)),使得该曲线在P点的切线与割线AB平行。

物理意义:对于直线运动,在任意一个运动过程中至少存在一个位置(或一个时刻)的瞬时速度等于这个过程中的平均速度。

拉格朗日中值定理又称拉氏定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。法国数学家拉格朗日于1778年在其着作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。

拉格朗日中值定理内容:

如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a)。

证明:

把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。

做辅助函数G(x)=f(x)-f(a)-{[f(b)-f(a)]/(b-a)}(x-a)。

易证明此函数在该区间满足条件:

1.g(a)=g(b)=0;

2.g(x)在[a,b]连续;

3.g(x)在(a,b)可导。
此即罗尔定理条件,由罗尔定理条件即证。

拉格朗日中值定理一般怎么用?

这个定理是高数中比较基础且比较难的问题。一般是证明题中运用得比较多。比如说证明一个不等式。需要用到公式中的,切记这个是满足区间中的任意数,要正确理解任意的含义。 举一个证明的列子,书上也出现过的。证明(b-a)/b

拉格朗日中值定理理解

画个图就理解了。就是零点定理的升华。把它的证明搞懂就理解了。。书上有例子。

扩展

怎么画图?

补充

证明的时候,不是用到这个了吗?证明的时候,假设了方程啊。你好好翻翻书啊~~

证明拉格朗日中值定理

证明如下:

如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意图令f(x)为y,所以该公式可写成△y=f'(x+θ△x)*△x (0<θ<1) 上式给出了自变量取得的有限增量△x时,函数增量△y的准确表达式,因此本定理也叫有限增量定理.

定理内容

若函数f(x)在区间[a,b]满足以下条件:

(1)在[a,b]连续

(2)在(a,b)可导

则在(a,b)中至少存在一点c使f'(c)=[f(b)-f(a)]/(b-a)

证明:

把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.

做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}(x-a).

易证明此函数在该区间满足条件:

1.G(a)=G(b);

2.G(x)在[a,b]连续;

3.G(x)在(a,b)可导.

此即罗尔定理条件,由罗尔定理条件即证

几何意义

若连续曲线y=f(x)在A(a,f(a)),B(b,f(b))两点间的每一点处都有不垂直与x轴的切线,则曲线在A,B间至少存在一点P(c,f(c)),使得该曲线在P点的切线与割线AB平行.

扩展

为什么罗尔定理条件证明了就证明了拉格朗日中值定理

拉格朗日中值定理是什么

拉格朗日中值定理:若函数 满足下列条件:1)在闭区间 连续;2)在开区间 可导,则在开区间 内知道好存在一点 ,使 .
拉格朗日定理的几何意义是:若闭区间 上有一条连续曲线,曲线上每一点都存在切线,则曲线上至少存在一点 ,过点M的切线平行于割线AB.
公式编辑器的东西粘不上,楼上几个的公式就很准确了,还有一些推论变形什么的。你要是想要具体点的我把我论文发给你看看是定理应用方向的,留个邮箱。

拉格朗日中值定理的应用

看清楚了,闭区间连续,开区间可导,是可以直接运用拉个朗日中值定理的,所以第一种情况不用讨论。至于第二种情况,仔细看清楚了,人家要分割成两个区间,区间,哥们你懂得,【0,0】【1,1】是区间吗?所以要讨论!————来自2014考研的学长。
再啰嗦一点,全书上也有错的地方,大胆质疑,小心论证,毕竟错的地方很少。祝你考研成功!

上一篇:不动产投资,不动产的投资指的是什么意思

下一篇:没有了

相关阅读