复数的概念与运算?
复数是形如 a + b i的数。式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。
复数有多种表示形式,常用形式 z = a + b i叫做代数式。此外有下列形式。
①几何形式。复数 z = a + b i 用直角坐标平面上点 Z ( a , b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式。复数 z = a + b i用一个以原点 O 为起点,点 Z ( a , b )为终点的向量 O Z 表示。这种形式使复数的加、减法运算得到恰当的几何解释。
③三角形式。复数 z= a + b i化为三角形式
z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。
④指数形式。将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式
z =| z | e i q , 复数的乘、除、乘方、开方可以按照幂的运算法则进行。
复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序。
(k=0,1,2,3…n-1)
我们把数学分析中基本的实变初等函数推广到复变初等函数,使得定义的各种复变初等函数,当z变为实变数x(y=0)时与相应的实变初等函数相同。
注意根据这些定义,在z为任意复变数时,
①.哪些相应的实变初等函数的性质被保留下来
②.哪些相应的实变初等函数的性质不再成立
③.出现了哪些相应的实变初等函数所没有的新的性质。
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
参考资料:百度百科-复数
复数的概念是
复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。 由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。 复数有多种表示法,诸如向量表示、三角表示,指数表示等。它满足四则运算等性质。它是复变函数论、解析数论、傅里叶分析、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。
参考资料:http://baike.baidu.com/view/10078.html?wtp=tt
“共轭复数”的基本概念和运算方法是什么?
基本概念:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。
运算方法:
(1)加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
(2)减法法则:两个复数的差为实数之差加上虚数之差(乘以i),即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
(3)乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(4)除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
(5)开放法则:若z^n=r(cosθ+isinθ),则z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)
运算特征:
(1)(z1+z2)′=z1′+z2′
(2) (z1-z2)′=z1′-z2′
(3) (z1·z2)′=z1′·z2′
(4) (z1/z2)′=z1′/z2′ (z2≠0)
总结:和(差、积、商)的共轭等于共轭的和(差、积、商)。
复数的相关概念以及性质
望
复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,复数的实部如果等于零,则称为纯虚数。[1] 由上可知,复数集包含了实数集,并且是实数集的扩张。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)·(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)。
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。
[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=Z是一个函数。
主要内容
? 形式
? 复数的模
3共轭复数
? 释义
? 性质
4复数的辐角
? 概述
? 释义
5运算法则
? 加法法则
? 乘法法则
? 除法法则
? 开方法则
? 运算律
? i的乘方法则
? 棣莫佛定理
? 复数三角形式
6复数与几何
? 复平面
? 几何表示法
? 区域的概念
? 简单曲线
7复数与函数
? 单连/多连通域
? 导数定义
? 可导与连续
? 可导与可微
? 复变函数积分
? 柯西积分定理
? 解析函数的概念
? 充要条件
复数的概念是
复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位(即-1开根)。 由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。 复数有多种表示法,诸如向量表示、三角表示,指数表示等。它满足四则运算等性质。它是复变函数论、解析数论、傅里叶分析、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。
参考资料:http://baike.baidu.com/view/10078.html?wtp=tt
高中必修几学复数?在哪一节?高中数学必修几学复数?在哪一节
1、复数在选修选材2-2中
2、选修2-2的各章内容如下:
第一章 导数及其应用
第二章 推理与证明
第三章 数系的扩充与复数的引入
3、第一章 主要介绍了导数的概念、导数在研究函数中的作用,微积分基本定理等内容
第二章 主要介绍了 合情推理与演绎推理及各种证明方法:如分析法、综合法、反证法、数学归纳法
第三章 主要介绍了复数的概念与运算
补充
,亲
复数定义是什么意思
复数x被定义为二元有序实数对(a,b) ,记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算规定为:加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;除法法则:(a+bi)÷(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)
数学复数要过程
1:z+z'=-√2,因此Z的实部=-√2/2
(z-z')i=√6 (z-z')i*i=√6i (z-z')*-1=√6i z-z'=-√6i z的虚部=-√6i/2
2:z是的方程的实根,z=-√2/2-√6i/2 所以
z^2+bz+c=0将z带入方程
(-√2/2-√6i/2)^2+b(-√2/2-√6i/2)+c=0
得-1-√3i/2-√2b/2-√6bi/2+c=0
整理后,有复数的定义得,实部=0 虚部=0
得-1-√2b/2+c=0
-√3/2-√6b/2=0
解的b= 1/2 c=-√2/2
复数的原理是什么?
复数概念的进化是数学史中最奇特的一章,那就是数系的历史发展完全没有按照教科书所描述的逻辑连续性。人们没有等待实数的逻辑基础建立之后,才去尝试新的征程。在数系扩张的历史过程中,往往许多中间地带尚未得到完全认识,而天才的直觉随着勇敢者的步伐已经到达了遥远的前哨阵地。
1545年,此时的欧洲人尚未完全理解负数、无理数,然而他们智力又面临一个新的“怪物”的挑战。例如卡丹在所著《重要的艺术》(1545)中提出一个问题:把10分成两部分,使其乘积为40。这需要解方程x (10-x) = 40,他求得的根是5-√-15 和5+√-15,然后说“不管会受到多大的良心责备,”把5+√-15和5-√-15相乘,得到25-(-15)=40。于是他说,“算术就是这样神妙地搞下去,它的目标,正如常言所说,是有精致又不中用的。”笛卡尔(Descartes,1596-1650)也抛弃复根,并造出了“虚数”(imaginary number)这个名称。对复数的模糊认识,莱布尼兹(Leibniz,1646- 1716)的说法最有代表性:“圣灵在分析的奇观中找到了超凡的显示,这就是那个理想世界的端兆,那个介于存在与不存在之间的两栖物,那个我们称之为虚的—1的平方根。”
直到18世纪,数学家们对复数才稍稍建立了一些信心。因为,不管什么地方,在数学的推理中间步骤中用了复数,结果都被证明是正确的。特别是1799年,高斯(Gauss,1777- 1855)关于“代数基本定理”的证明必须依赖对复数的承认,从而使复数的地位得到了近一步的巩固。当然,这并不是说人们对“复数”的顾虑完全消除了。甚至在1831年,棣莫甘(De Morgan,1806- 1871) 在他的著作《论数学的研究和困难》中依然认为:
"……
已经证明了记号 是没有意义的,或者甚至是自相矛盾或荒唐可笑的。然而,通过这些记号,代数中极其有用的一部分便建立起来的,它依赖于一件必须用经验来检验的事实,即代数的一般规则可以应用于这些式子(复数)。
……"
我们知道,18世纪是数学史上的“英雄世纪”,人们的热情是如何发挥微积分的威力,去扩大数学的领地,没有人会对实数系和复数系的逻辑基础而操心。既然复数至少在运算法则上还是直观可靠的,那又何必去自找麻烦呢?
1797年,挪威的韦塞尔(C. Wessel,1745-1818) 写了一篇论文“关于方向的分析表示”,试图利用向量来表示复数,遗憾的是这篇文章的重大价值直到1897年译成法文后,才被人们重视。瑞士人阿甘达(J. Argand,1768-1822) 给出复数的一个稍微不同的几何解释。他注意到负数是正数的一个扩张,它是将方向和大小结合起来得出的,他的思路是:能否利用新增添某种新的概念来扩张实数系?在使人们接受复数方面,高斯的工作更为有效。他不仅将 a+ bi 表示为复平面上的一点 ( a,b),而且阐述了复数的几何加法和乘法。他还说,如果1,-1 和 原来不称为正、负和虚单位,而称为直、反和侧单位,那么人们对这些数就可能不会产生种种阴暗神秘的印象。他说几何表示可以使人们对虚数真正有一个新的看法,他引进术语“复数”(complex number)以与虚数相对立,并用 i 代替。
在澄清复数概念的工作中,爱尔兰数学家哈米尔顿(Hamilton,1805 – 1865) 是非常重要的。哈米尔顿所关心的是算术的逻辑,并不满足于几何直观。他指出:复数a+ bi 不是 2 + 3意义上的一个真正的和,加号的使用是历史的偶然,而 bi 不能加到a 上去。复数a+ bi 只不过是实数的有序数对(a,b),并给出了有序数对的四则运算,同时,这些运算满足结合律、交换率和分配率。在这样的观点下,不仅复数被逻辑地建立在实数的基础上,而且至今还有点神秘的-1的平方根也完全消除了。
复数运算法则与向量运算
有本质上的不同
首先,复数是对数的完整,是数的基本形式.而向量则为一个研究有方向有大小的专门数学分支.下面举3例说明:
复数在复分析的计算中,可用欧拉公式化成Ae^(iθ),做乘法时的意义为旋转放缩映射,向量相乘则主要是做物理意义明显的点乘和叉乘.
基底正交的情况可以张成一个面,但是你想想,如果基底I.J,--I做算术是不会无端端变成J的,但是虚数i*i=-1就跑到实轴上去了,这是最基本的不同点.
在复分析中有一种复数乘向量的算法,在那你就能见识到他们本质上的巨大差异.(有兴趣可以参考有关的书,一时半刻只能说这么多)