加权算术平均数怎么算
加权算术平均:
适用:主要用于处理经分组整理的数据。设原始数据为被分成K组,各组的组中的值为X1,X2,...,Xk,各组的频数分别为f1,f2,...,fk,加权算术平均数的计算公式为:
扩展资料
加权平均数是一个应用广泛的概念,平均气温、平均降雨量、年均增长率、平均产量、人均年收入等都是其具体表现形式。加权平均数是不同比重数据的平均数,是把原始数据按照合理的比例来计算。
在实际问题中,当各项权重不同时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算数平均数(算术平均是加权平均的一种特殊形式)。
加权平均值的大小不仅取决于总体中各单位的数值(变量值)的大小,而且取决于各数值出现的次数(频数),由于各数值出现的次数对其在平均数中的影响起着权衡轻重的作用,因此叫做权数。加权平均数一般有两个需要注意的内容:
1、总体平均数介于两部分的平均数之间;
2、总体平均数值的大小跟两个部分绝对量的比例相关(十字交叉法)。
参考资料来源:百度百科-算术平均数
算术平均数和加权平均数有什么区别和联系?
一、联系
两者都是平均数,算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。两者计算时都需要获取数据的大小。都可以反映数据的分布规律。
二、区别
1、定义与计算公式不同
算术平均数又称均值,是统计学中基本的平均指标,计算方法简便,设一组数据为X1,X2,...,Xn,简单的算术平均数的计算公式为:M=(X1+X2+...+Xn)/n。
加权平均数即加权平均值,是将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。
设原始数据为被分成K组,各组的组中的值为X1,X2,...,Xk,各组频数分别为f1,f2,...,fk,加权算术平均数的计算公式为:M=(X1f1+X2f2+...+Xkfk)/(f1+f2+...+fk)。
2、影响因素不同
算术平均数影响因素为数据值和数据个数,且易受极端数据的影响,极端值的出现,会使平均数的真实性受到干扰。
而加权平均值的大小不仅取决于总体中各单位的数值的大小,而且取决于各数值出现的次数(频数),即权数影响加权平均数,而不影响算术平均数。
3、适用范围不同
算术平均数适用于数值型数据,主要用于未分组的原始数据,不适用于品质数据。加权平均数主要用于处理经分组整理的数据,常应用在期货和市政预算中。
三、权的意义
权重是指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度,倾向于贡献度或重要性。
例如:
学生期末总评是对学生平时成绩,期中考成绩,期末考成绩的综合评价,但是这三个成绩所占期末总评成绩的比重不一样。若平时成绩占30%,期中考成绩占30%,期末考成绩占40%,那么期末总评=平时成绩*0.3+期中考成绩*0.3+期末考成绩*0.4。
参考资料来源:百度百科-算术平均数
加权算术平均数的权数有什么形式?
在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。
权数决定指标的结构,权数如变动,绝对指标值和平均数也变动,所以权数是影响指标数值变动的一个重要因素。
权数一般有两种表现形式:一是绝对数(频数)表示,另一个是用相对数(频率)表示。
相对数是用绝对数计算出来的百分数(%)或千分数(‰)表示的,又称比重。
也就是说,权数的形式通常有两种:频数(某一数字出现的次数)和频率(占比)两种形式。
算术平均数和加权平均数有什么联系和区别
一、算术平均数和加权平均数有含义、影响因素和适用范围三个区别:
1、含义不同
算术平均数又称均值,是统计学中基本的平均指标,就是简单的把所有数加起来然后除以个数。如设一组数据为X1,X2,...,Xn,简单的算术平均数的计算公式为:
3、适用范围不同
适用于数值型数据,主要用于未分组的原始数据。不适用于品质数据。
加权平均数主要用于处理经分组整理的数据,常应用在期货和市政预算中。若期货价格高于加权平均数时,后者在缓步上移或急速上移,则市况将易升难跌或持续向好。在市政工程量的计算中,经常遇到子目类型一样,但数量不同的数字,利用加权平均法的概念设计了其市政预算中的应用。
二、算术平均数和加权平均数联系
算术平均数是加权平均数的一种特殊形式(特殊在各项的权重相等)。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数;各项权相等时,计算平均数就要采用算术平均数。
参考资料:
百度百科-加权平均值
什么叫做加权平均数?它与算术平均数有什么区别?。。。
概况:
加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算, 若在一组数中,X1出现F1次,X2出现F2次,…,Xk出现Fk次,那么(X1F1 + X2F2+ ... XkFk)÷ (F1 + F2 + ... + Fk)叫做X1﹑X2…Xk的加权平均数。F1﹑F2…Fk是X1﹑X2…Xk的权。其中,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等),当实际问题中,当各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算数平均数。两者不可混淆。公式:
编辑本段加权平均数
x拔=(x1f1 + x2f2+ ... xkfk)/n,其中f1 + f2 + ... + fk=n,f1,f2,…,fk叫做权。通过数和权的乘积来计算 要点明晰 1.在日常生活中,我们常用平均数表示一组数据的‘平均水平’。 2.在一组数据里,一个数据出现的次数称为权。
编辑本段例子
你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是: 80×40%+90×60%=86 学校食堂吃饭,吃三碗的有 χ 人,吃两碗的有 y 人,吃一碗的 z 人。平均每人吃多少? (3×χ + 2×y + 1×z)÷(χ + y + z) 这里x、y、z分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。 ============================= 当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化.例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为 (10×2 + 9×1 + 8×3 + 7×4 )÷10 = 8.1 这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10. 在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义。 比如在一些体育比赛项目中,也要用到权重的思想.比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不同,尽管完成各自动作的质量相同,但得分也是不相同的,难度系数大的运动员得分应该高些,难度系数实际上起着权重的作用。 而普通的算术平均数的权重相等,都是1,(比如,3和5的平均数为4)也就是说它们的重要性相同,所以平均数是特殊的加权平均数。
扩展
真是难以理解啊。。。啊~~这是初二的知识吧....
参考资料:http://baike.baidu.com/view/142953.htm
什么是加权平均,什么是算术平均,二者有什么区别
简单地说,若有ABCDE五个数据,算术平均就是加起来除以5,加权平均则是按每个数据不同的比重(比如A占百分之二十)加起来除以5.
举个例子,期末了,要结算学分,规定社会实践占20百分之,考试成绩占百分之八十,则你的总成绩就要用加权平均数,而百分之20百分之80称为权重。
加权平均法计算公式
x拔=(x1f1 + x2f2+ ... xkfk)/n,其中f1 + f2 + ... + fk=n,f1,f2,…,fk叫做权。通过数和权的成绩来计算
编辑本段例子
你的小测成绩是80分,期末考成绩是90分,老师要计算总的平均成绩,就按照小测40%、期末成绩60%的比例来算,所以你的平均成绩是: 80×40%+90×60%=86 学校食堂吃饭,吃三碗的有 χ 人,吃两碗的有 y 人,吃一碗的 z 人。平均每人吃多少? (3×χ + 2×y + 1×z)÷(χ + y + z) 这里3、2、1分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。 ============================= 当一组数据中的某些数重复出现几次时,那么它们的平均数的表示形式发生了一定的变化.例如,某人射击十次,其中二次射中10环,三次射中8环,四次射中7环,一次射中9环,那么他平均射中的环数为 (10×2 + 9×1 + 8×3 + 7×4 )÷10 = 8.1 这里,7,8,9,10这四个数是射击者射中的几个不同环数,但它们出现的频数不同,分别为4,3,l,2,数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重,上面的平均数称为加权平均数,不难看出,各个数据的权重之和恰为10. 在加权平均数中,除了一组数据中某一个数的频数称为权重外,权重还有更广泛的含义. 比如在一些体育比赛项目中,也要用到权重的思想.比如在跳水比赛中,每个运动员除完成规定动作外,还要完成一定数量的自选动作,而自选动作的难度是不同的,两位选手由于所选动作的难度系数不同,尽管完成各自动作的质量相同,但得分也是不相同的,难度系数大的运动员得分应该高些,难度系数实际上起着权重的作用. 而普通的算术平均数的权重相等,都是1,(比如,3和5的平均数为4)也就是说它们的重要性相同,所以平均数是特殊的加权平均数.