微分方程的特解怎么求
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根
令ar2+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)2=-β2)
第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x2+2x,则设Q(x)为ax2+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x2*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解。
通解的系数C1,C2是任意常数。
拓展资料:
微分方程
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
高数常用微分表
唯一性
存在定一微 分程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
怎么求这个微分方程的特解
常数变易法求解
更多扩展补充
扩展
为什么-2/x3的原函数为1/x2
补充
幂函数不定积分
扩展
我算出的和这不一样,能写具体一点过程吗
补充
我算的没问题
你把你算的发一下,我看看
扩展
我好像算错了,你是对的
补充
嗯明白怎么回事就行
一个微分方程求特解的题,请给出详细步骤,谢谢!
∵齐次方程y''-5y'+6y=0的特征方程是r2-5r+6=0,则r1=2,r2=3
∴齐次方程y''-5y'+6y=0的通解是y=C1e^(2x)+C2e^(3x) (C1,C2是积分常数)
∵设原方程的解为y=(Ax2+Bx)e^(2x)
代入原方程
==>A=-1/2,B=-1
∴原方程的一个解是y=-(x2/2+x)e^(2x)
于是,原方程的通解是y=C1e^(2x)+C2e^(3x)-(x2/2+x)e^(2x) (C1,C2是积分常数
∴C1=3,C2=2
故原方程在初始条件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x2/2+x)e^(2x)
即y=(3-x-x2/2)e^(2x)+2e^(3x)。
扩展资料:
微分方程的约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
唯一性
存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。
针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4] 则可以判别解的存在性及唯一性。
针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
参考资料来源:百度百科--微分方程
微分方程的特解代入原式怎么求
解答
微分方程y''-3y'+2y=xex对应的齐次微分方程为y''-3y'+2y=0
特征方程为t2-3t+2=0
解得t1=1,t2=2
故齐次微分方程对应的通解y=C1ex+C2e2x
因此,微分方程y''-3y'+2y=xex对应的非齐次微分方程的特解可设为y*=x(ax+b)ex=(ax2+bx)ex
y*'=[ax2+(2a+b)x+b]ex
y*''=[ax2+(4a+b)x+(2a+2b)]ex
将y*,y*',y*''代入微分方程y''-3y'+2y=xex消去ex即可得到:
[ax2+(4a+b)x+(2a+2b)]-3[ax2+(2a+b)x+b]+2(ax2+bx)=x
-2ax+2a-b=x
?2a=1
2a+b=0
a=?
1
2
b=1
所以,非齐次微分方程的特解为y*=(?
1
2
x2+x)ex
由于非齐次微分方程的通解=齐次微分方程的通解+非齐次微分方程的特解
所以,微分方程y''-3y'+2y=xex的通解为y+y*=(?
1
2
x2+x+C1)ex+C2e2x.
更多扩展补充
扩展
-2a=1,2a+b=0 这两个式子是怎么得来的啊
补充
一下吗
扩展
嗯嗯
能帮我解答一下嘛
微分方程求特解
先求通解,x=0代入求出常数。
齐次:
y'=2xy
y'/y=2x
lny=x2+C
y=e↑(x2+C)
变常数法:
y'=(2x+C')e↑(x2+C)
代入原方程:
(2x+C')e↑(x2+C)-2xe↑(x2+C)=xe↑(-x2)
C'e↑(x2+C)=xe↑(-x2)
C'e↑C=xe↑(-2x2)
e↑C=(-1/4)e↑(-2x2)+C2
C=ln[(-1/4)e↑(-2x2)+C2]
y=e↑(x2+C)
=y=e↑(x2+ln[(-1/4)e↑(-2x2)+C2])
=[(-1/4)e↑(-2x2)+C2]e↑x2
=(-1/4)e↑(-x2)+C2e↑x2
x=0
y=(-1/4)+C2=1
C2=5/4
特解:
y=(-1/4)e↑(-x2)+(5/4)e↑x2
微分方程,怎么设特解
如果右边为多项式,则特解就设为次数一样的多项式;
如果右边为多项项乘以e^(ax)的形式,那就要看这个a是不是特征根:
如果a不是特征根,那就将特解设为同次多项式乘以e^(ax);
如果a是一阶特征根,那这个特解就要在上面的基础上乘以一个x;
如果a是n重特征根,那这个特解就要在上面的基础上乘以x^n。
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x2+2x,则设Q(x)为ax2+bx+c,abc都是待定系数)
1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)
2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根 k=2 y*=x2*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
扩展资料:
求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。
后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。
这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。
参考资料来源:百度百科-微分方程
知道非其次微分方程的两个特解怎么求通解
通解是特解的线性组合,y=C1·y1+C2·y2,如果y1和y2线性无关的话。
一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。
齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。
扩展资料:
一阶非齐次线性微分方程的求解:
1、一阶非齐次线性微分方程y'+p(x)y=Q(x),若设 时,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。
参考资料:百度百科——非齐次线性微分方程