三角形的重心是什么?
三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。
任意三角形的三条中线把三角形分成面积相等的六个部分。中线都把三角形分成面积相等的两个部分。除此之外,任何其他通过中点的直线都不把三角形分成面积相等的两个部分。
中线(中点)运用:
1、几何中的中线(中点)常常是联系在一起的。因此遇到中点这样的条件(或关键词)我们可以考虑中线定理与中位线定理进行思考。
2、在面积问题中,中线把三角形的面积等分,如果两个三角形的高相同,面积之比可转化为底边之比。
3、在涉及中线的有关长度计算问题,往往需要“倍长中线”。
扩展资料
三角形重心常用性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等
证明方法:
在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。根据重心性质知:
OA'=1/3AA'
OB'=1/3BB'
OC'=1/3CC'
过O,A分别作a边上高OH',AH
可知OH'=1/3AH
则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC
同理可证S△AOC=1/3S△ABC
S△AOB=1/3S△ABC
所以,S△BOC=S△AOC=S△AOB
3、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数
即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];
4、三角形内到三边距离之积最大的点
5、卡诺重心定理:若G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3PG^2=1/3(a^2+b^2+c^2)+3PG^2
参考资料来源:百度百科-三角形重心
三角形重心有什么性质?
重心的几条性质 :
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。
5.重心是三角形内到三边距离之积最大的点。
6.三角形ABC的重心为G,点P为其内部任意一点,则3PG2=(AP2+BP2+CP2)-1/3(AB2+BC2+CA2)。
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB2+BC2+CA2)为半径的圆周上。
9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA2+PB2+PC2=GA2+GB2+GC2+3PG2。
扩展资料:
重心确定方法
1,组合法
工程中有些形体虽然比较复杂,但往往是由一些简单形体的组合,这些形体的重心通常是已知的或易求的。
2,负面积法
如果在规则形体上切去一部分,例如钻一个孔等,则在求这类形体的重心时,可以认为原形体是完整的,只是把切去的部分视为负值(负体积或负面积)。
3,实验法(平衡法)
如物体的形状不是由基本形体组成,过于复杂或质量分布不均匀,其重心常用实验方法来确定。主要包括悬挂法和称重法。
参考资料:百度百科--重心
三角形重心有什么性质?
重心的几条性质 :
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。
5.重心是三角形内到三边距离之积最大的点。
6.三角形ABC的重心为G,点P为其内部任意一点,则3PG2=(AP2+BP2+CP2)-1/3(AB2+BC2+CA2)。
7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3
8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB2+BC2+CA2)为半径的圆周上。
9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA2+PB2+PC2=GA2+GB2+GC2+3PG2。
扩展资料:
重心确定方法
1,组合法
工程中有些形体虽然比较复杂,但往往是由一些简单形体的组合,这些形体的重心通常是已知的或易求的。
2,负面积法
如果在规则形体上切去一部分,例如钻一个孔等,则在求这类形体的重心时,可以认为原形体是完整的,只是把切去的部分视为负值(负体积或负面积)。
3,实验法(平衡法)
如物体的形状不是由基本形体组成,过于复杂或质量分布不均匀,其重心常用实验方法来确定。主要包括悬挂法和称重法。
参考资料:百度百科--重心
三角形的重心是什么,求画图,有什么性质
三角形重心是三角形三条中线的交点。
性质一、重心到顶点的距离与重心到对边中点的距离之比为2:1。
性质二、重心和三角形3个顶点组成的3个三角形面积相等。
性质三、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
性质四、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。
性质五、三角形内到三边距离之积最大的点。
性质六、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
性质七、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)
关于重心的顺口溜:
三条中线必相交,交点命名为重心
重心分割中线段,线段之比二比一;
扩展资料:
三角形的五心之其他四心:
内心:三角形三边的垂直平分线的交点叫三角形的外心.(外接圆的圆心)
外心:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。
垂心:三角形的垂心是三角形三边上的高的交点(通常用H表示)。
旁心: 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
三角形重心是什么
重心:三条中线的交点。垂心:三条高的交点。内心:三条角平分线的交点。外心:三条边中垂线的交点。
还有“旁心”,是旁切圆的圆心,一个内角平分线与两个外角平分线的交点,有三个旁心。
什么是三角形重心
重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。
重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点。 重 心 三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了, 重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好.
参考资料:http://baike.baidu.com/view/1571227.html?wtp=tt
三角形的重心,垂心,外心,内心的定义及性质分别是什么
一、三角形的外心
定义:
三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。
性质:
1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.
2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。
3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
二、三角形的内心
定义:
三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心)。
性质:
1.三角形的三条角平分线交于一点,该点即为三角形的内心
2.三角形的内心到三边的距离相等,都等于内切圆半径r
3.r=2S/(a+b+c)
4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2
6.S△=[(a+b+c)r]/2 (r是内切圆半径)
三、三角形的垂心
定义:
三角形的垂心是三角形三边上的高的交点(通常用H表示)。
性质:
1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外
2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心
3. 垂心O关于三边的对称点,均在△ABC的外接圆圆上。
4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF
5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC
8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。(施瓦尔兹三角形,最早在古希腊时期由海伦发现)
12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上
13.设锐角△ABC内有一点P,那么P是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
14.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。
15.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
四、三角形的重心
定义:
三角形的重心是三角形三条中线的交点。
性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
三角形的内心,重心什么的是?
三角形的外心是三角形三边的垂直平分线的交点(或三角形外接圆的圆心) 。
三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心)。
三角形的垂心是三角形三边上的高的交点(通常用H表示)。
三角形的重心是三角形三条中线的交点。
三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心。
三角形的中心、重心的定义?性质?
三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,这个心是三角形的中心。
三角形重心:三角形三条中线的交点即为三角形重心。
三角形的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)。
扩展资料
五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆、外接圆、旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点和欧拉点;“一线”即欧拉线。
三角形的五心定理 :
①重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心。
②外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
③垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。
④内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
⑤旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
三角形的重心、外心、垂心、内心、旁心称为三角形的五心。它们都是三角形的重要相关点。
参考资料:百度百科-三角形
三角形的中心,重心,内心,外心有什么区别
1、三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。
2、三角形的重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍。重心分中线比为1:2。
3、三角形的内心:三条角平分线的交点,是三角形的内切圆的圆心的简称。到三边距离相等。
4、三角形的外心:三条中垂线的交点,是三角形的外接圆的圆心的简称。到三顶点距离相等。
扩展资料:
一、三角形的五心:三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
二、三角形五心歌(重外垂内旁)
三角形有五颗心,重外垂内和旁心, 五心性质很重要,认真掌握莫记混。
1、重 心
三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好。
2、外 心
三角形有六元素,三个内角有三边. 作三边的中垂线,三线相交共一点。
此点定义为外心,用它可作外接圆. 内心外心莫记混,内切外接是关键。
3、垂 心
三角形上作三高,三高必于垂心交. 高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形, 四点共圆图中有,细心分析可找清。
4、内 心
三角对应三顶点,角角都有平分线, 三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆, 此圆圆心称“内心”,如此定义理当然。
五心性质别记混,做起题来真是好。
参考资料:
百度百科-三角形五心定律