多元线性回归和多重线性回归的区别及联系
一、自变量的数据类型不同
多元线性回归:多元线性回归的自变量X的数据类型是连续型变量。
多重线性回归:多重线性回归的自变量X的数据类型可能存在多种数据类型,例如性别等的离散型变量。
二、方程不同
多元线性回归:多元线性回归的方程中没有随机变量。
多重线性回归:多重线性回归的方程中有随机变量。
三、因变量的值不同
多元线性回归:多元线性回归的回归方程求出的是因变量y的平均值。
多重线性回归:多重线性回归的回归方程求出的是因变量y的平均预测值。
扩展资料
多重线性回归的条件:
1、因变量为连续性变量
2、自变量不少于2个
3、因变量与自变量之间存在线性关系
4、样本个体间相互独立(由Durbin-Waston检验判断)
5、等方差性:各X值变动时,相应的Y有相同的变异度
6、正态性:给定各个X值后,相应的Y值服从正态分布
7、不存在多重共线性
参考资料来源:百度百科-多重线性回归
多元线性回归分析的优缺点
一、多元线性回归分析的优点:
1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。
3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。
二、多元线性回归分析的缺点
有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。
扩展资料
社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归 。
多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验 。
选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。
Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。
多元线性回归,主成分回归和偏最小二乘回归的联系与区别
做多元线性回归分析的时候,有可能存在多重共线性的情况,为了消除多重共线性对回归模型的影响,通常可以采用主成分回归和偏最小二乘法来提高估计量的稳定性。主成分回归是对数据做一个正交旋转变换,变换后的变量都是正交的。(有时候为了去除量纲的影响,会先做中心化处理)。偏最小二乘回归相当于包含了主成分分析、典型相关分析的思想,分别从自变量与因变量中提取成分T,U(偏最小二乘因子),保证T,U能尽可能多的提取所在变量组的变异信息,同时还得保证两者之间的相关性最大。偏最小二乘回归较主成分回归的优点在于,偏最小二乘回归可以较好的解决样本个数少于变量个数的问题,并且除了考虑自变量矩阵外,还考虑了响应矩阵。
多元回归分析与logistic回归的分析的区别和联系
1、概念不同:
(1)多重线性回归模型可视为简单直线模型的直接推广,具有两个及两个以上自变量的线性模型即为多重线性回归模型。
(2)logistic属于概率型非线性回归,是研究二分类(可扩展到多分类)观察结果与一些影响因素之间关系的一种多变量分析方法。
2、变量的特点
多元回归分析的应变量:1个;数值变量(正态分布);自变量:2个及2个以上;最好是数值变量,也可以是无序分类变量、有序变量。
logistic回归的分析应变量:1个;二分 类变量(二项分布)、无序 /有序多分类变量;自变量:2个及2个以上;数值变量、二分类变量、无序/有序多分类变量。
总体回归模型LogitP=(样本)偏回归系数含义表示在控制其它因素或说扣除其它因素的作用后(其它所有自变量固定不变的情况下),某一个自变量变化一个单位时引起因变量Y变化的平均大小。
表示在控制其它因素或说扣除其它因素的作用后(其它所有自变量固定不变的情况下),某一因素改变一个单位时,效应指标发生与不发生事件的概率之比的对数变化值(logitP的平均变化量),即lnOR。
3、适用条件LINE:
1、L:线性——自变量X与应变量Y之间存在线性关系;
2、I:独立性——Y值相互独立,在模型中则要求残差相互独立,不存在自相关;
3、N:正态性——随机误差(即残差)e服从均值为零,方差为 2的正态分布;
4、E:等方差——对于所有的自变量X,残差e的方差齐。
观察对象(case)之间相互独立;若有数值变量,应接近正态分布(不能严重偏离正态分布);二分类变量服从二项分布;要有足够的样本量;LogitP与自变量呈线性关系。
多元线性回归和多因素方差分析一样吗
不一样。
回归分析是多个变量之间的关系。方差分析是多个样本之间的差异。
多元线性回归多重共线性检验及避免方法,简单点的
多重共线性指自变量问存在线性相关关系,即一个自变量可以用其他一个或几个自变量的线性表达式进行表示。若存在多重共线性,计算自变量的偏回归系数β时,矩阵不可逆,导致β存在无穷多个解或无解。
而在使用多元线性回归构建模型过程中,变量之间存在多重共线性问题也是比较常见的。那么当发现多重线性回归模型中存在多重共线性时我们该如何处理呢?
可通过以下方法予以解决:
(1)逐步回归
使用逐步回归可以在一定程度上筛选存在多重共线性的自变量组合中对反应变量变异解释较大的变量,而将解释较小的变量排除在模型之外。
但这种方法缺点是当共线性较为严重时,变量自动筛选的方法并不能完全解决问题。
(2) 岭回归
岭回归为有偏估计,但能有效地控制回归系数的标准误大小。
(3) 主成分回归
可以使用主成分分析的方法对存在多重共线性的自变量组合提取主成分,然后以特征值较大的(如大于1)几个主成分与其他自变量一起进行多重线性回归。得出的主成分回归系数再根据主成分表达式反推出原始自变量的参数估计。
该方法在提取主成分时丢失了一部分信息,几个自变量间的多重共线性越强,提取主成分时丢失的信息越少。
(4) 路径分析
如果对自变量间的联系规律有比较清楚的了解,则可以考虑建立路径分析模型,以进行更深入的研究。
协变量方差分析和多重线性回归分别用于什么情况?有重合的地方吗?
他们都属于一般线性模型的特殊情况,其中协方差分析是一部分解释变量是连续的,一部分解释变量是0-1变量。而多重现行回归则要求全部解释变量都是连续变量。